

Spring 2021

ADVANCED TOPICS IN COMPUTER VISION

Atlas Wang Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

Deep Learning on the Edge

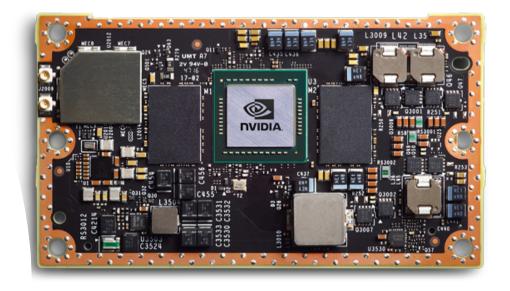
- Deploying CNNs on resource-constrained platforms/at the edge
- Two Scenarios: Inference (pre-trained model), and Training (online adaptation)

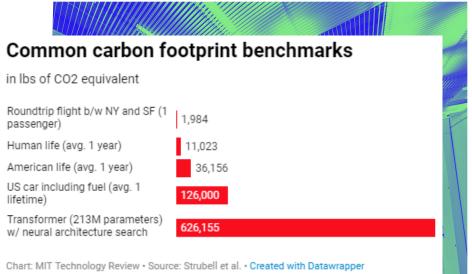
Real-Time Machine Learning (RTML)

PROGRAM SOLICITATION

NSF 19-566

National Science Foundation


Directorate for Computer and Information Science and Engineering Division of Computing and Communication Foundations


Directorate for Engineering Division of Electrical, Communications and Cyber Systems

RTML Program goal: "for next-generation **co-design** of RTML algorithms and hardware, with the principal focus on developing novel hardware architectures and learning algorithms in which **all stages of training** (including incremental training, hyperparameter estimation, and deployment) can be performed in real time."

Deep Learning on the Edge

- Three Top Concerns:
 - Storage and Memory
 - Speed or Latency
 - Energy Efficiency
- The three goals all pursue "light weight"
- ... but they are often not aligned*
- ... so need to consider all in implementation
- ... and for both Inference and Training
- Broad economic viability requires energy efficient A
- Energy efficiency of a brain is 100x better than current SOTA hardware!

* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016

Model Compression

- Training Phase:
 - The easiest way to extract a lot of knowledge from the training data is to learn many different models in parallel.
 - 3B: Big Data, Big Model, Big Ensemble
 - Imagenet: 1.2 million pictures in 1,000 categories.
 - AlexNet: ~ 240Mb, VGG16: ~550Mb
- Testing Phase:
 - Want small and specialist models.
 - Minimize the amount of computation and the memory footprint.
 - Real time prediction
 - Even able to run on mobile devices.

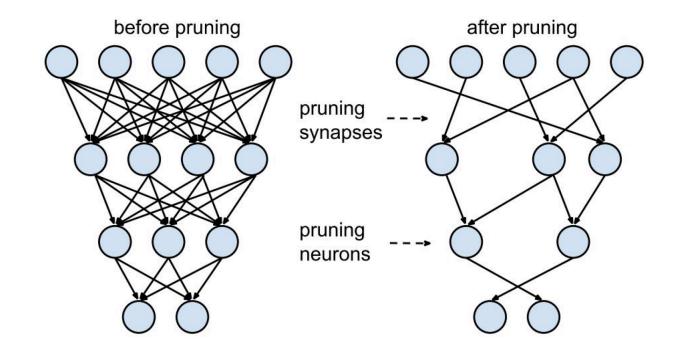
Two Main Streams

- "Transfer": How to transfer knowledge from big general model (teacher) to small specialist models (student)?
 - Example: "Distilling the Knowledge in a Neural Network", G. Hinton et. al., 2015
- "Compress": How to reduce the size of the same model, during or after training, without losing much accuracy.
 - Example: "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", S. Han et. al., 2016
- **Comparison:** Knowledge Transfer provides a way to train a <u>new small model</u> inheriting from big general models, while Deep Compression Directly does the surgery on big models, using a pipeline: pruning, quantization & Huffman coding.

Knowledge Transfer/"Distillation": Main Idea

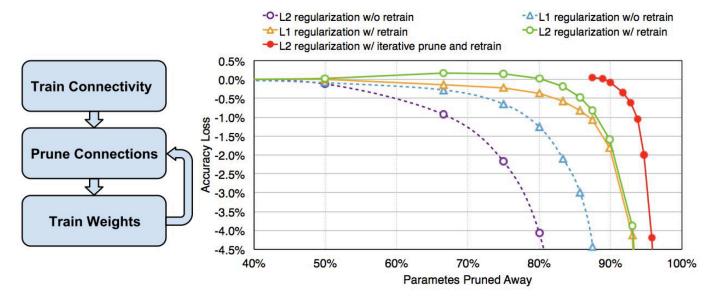
- Introduce "Soft targets" as one way to transfer the knowledge from big models.
 - Classifiers built from a softmax function have a great deal more information contained in them than just a classifier;
 - The correlations in the softmax outputs are very informative.

- Hard Target: the ground truth label (one-hot vector)
 - Soft Target: $q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$ T is "temperature", z is logit
 - More information in soft targets


cow	dog	cat	0 original hard targets
0	1	0	
cow	dog	cat	.005 softened output
.05	.3	.2	of ensemble

Hinton's Observation: If we can extract the knowledge from the data using very big models or ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...


Deep Compression: Main Idea (i)

Pruning

Deep Compression: Main Idea (ii)

Retrain to Recover Accuracy

Network pruning can save 9x to 13x parameters without drop in accuracy

Weight Sharing (Trained Quantization)

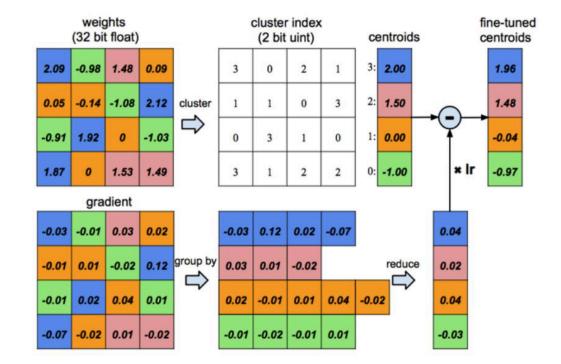
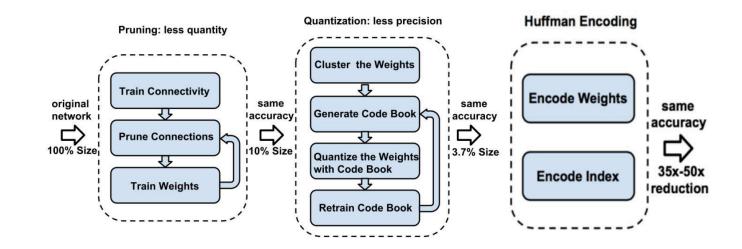
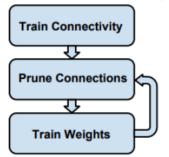
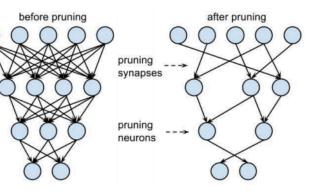



Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

Deep Compression: Main Idea (iii)

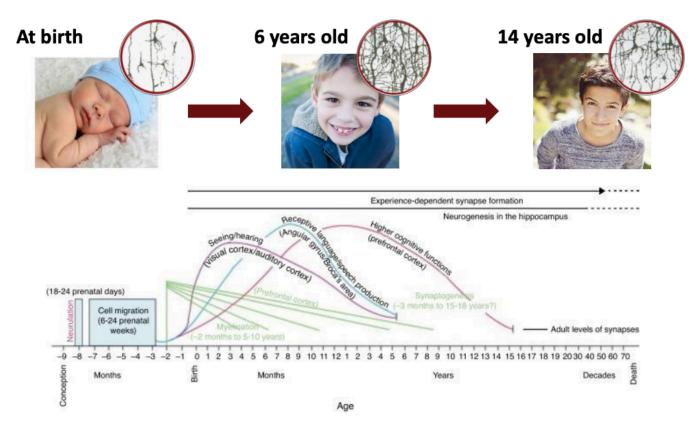

Deep Compression: Main Idea (iv)

Huffman Coding



More About Pruning

- Determining **low-saliency parameters**, given a pre-trained network
- Follows the framework proposed by LeCun et al. (1990):
 - 1. Train a deep model until convergence
 - 2. Delete "unimportant" connections w.r.t. a certain criteria
 - 3. Re-train the network
 - 4. Iterate to step 2, or stop



- Defining which connection is unimportant can vary
 - Weight magnitudes (L^2 , L^1 , ...)
 - Mean activation [Molchanov et al., 2016]
 - Avg. % of Zeros (APoZ) [Hu et al., 2016]
 - Low entropy activation [Luo et al., 2017]
 - ...

Human Brain Prunes too!

- Human brains are also using pruning schemes as well
- Synaptic pruning removes redundant synapses in the brain during lifetime

Optimal Brain Damage (OBD)

- Network pruning perturbs weights W by zeroing some of them
- How the loss L would be changed when W is perturbed?
- **OBD** approximates *L* by the 2nd order Taylor series:

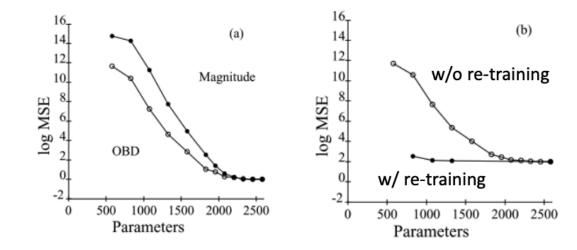
$$\delta L \simeq \underbrace{\sum_{i} \frac{\partial L}{\partial w_{i}} \delta w_{i}}_{\text{1st order}} + \underbrace{\frac{1}{2} \sum_{i} \frac{\partial^{2} L}{\partial w_{i}^{2}} \delta w_{i}^{2} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} L}{\partial w_{i} \partial w_{j}} \delta w_{i} \delta w_{j}}_{\text{2nd order}} + O(||\delta \mathbf{W}||^{3})$$
Problem: Computing $H = \left(\frac{\partial L}{\partial w_{i} \partial w_{j}}\right)_{i,j}$ is usually intractable

• Requires $O(n^2)$ on **# weights**

٠

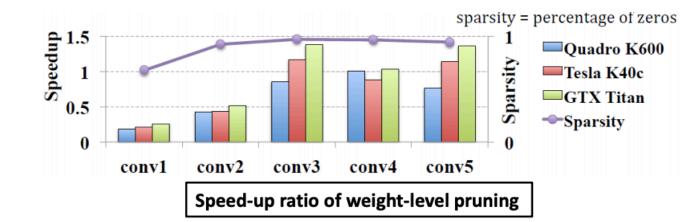
- Neural networks usually have enormous number of weights
 - e.g. AlexNet: **60M** parameters \Rightarrow *H* consists \approx **3**. **6** \times **10**¹⁵ elements

Optimal Brain Damage (OBD)


- Problem: Computing $H = \left(\frac{\partial L}{\partial w_i \partial w_j}\right)_{i,j}$ is usually intractable
- Two additional assumptions for tractability
 - **1. Diagonal** approximation: $H = \frac{\partial^2 L}{\partial w_i \partial w_j} = 0$ if $i \neq j$
 - **2. Extremal** assumption: $\frac{\partial L}{\partial w_i} = 0 \quad \forall i$
 - W would be in a local minima if it's pre-trained
- Now we get: $\delta L \simeq \frac{1}{2} \sum_{i} \frac{\partial^2 L}{\partial w_i^2} \delta w_i^2 + O(||\delta \mathbf{W}||^3)$ • It only needs $\operatorname{diag}(H) \coloneqq \left(\frac{\partial^2 L}{\partial w_i^2}\right)_i$
- diag(H) can be computed in O(n), allowing a backprop-like algorithm
 - For details, see [LeCun et al., 1987]

Optimal Brain Damage (OBD)

• How the loss L would be changed when W is perturbed?


$$L(\delta \mathbf{W}) \simeq \frac{1}{2} \sum_{i} \frac{\partial^2 L}{\partial w_i^2} \delta w_i^2 \eqqcolon \sum_{i} \frac{1}{2} h_{ii} \delta w_i^2$$

- The saliency for each weight $\Rightarrow s_i \coloneqq \frac{1}{2}h_{ii}|w_i|^2$ $s_i \coloneqq |w_i|$
- OBD shows robustness on pruning compared to magnitude-based deletion
- After re-training, the original test accuracy is recovered

Structured Sparsity

- "Un-structured" weight-level pruning may not engage a practical speed-up
 - Despite of extremely high sparsity, actual speed-ups in GPU is limited

Non-structured sparsity (poor data pattern)

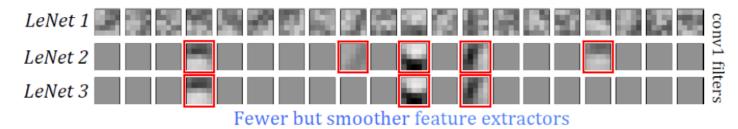
and the second	1. Children Mittenster - Contract 1 States 191 and 101	
Wanter to reference to the second of the	and the second second with the second s	the state of the second state of the second
a man in the an internal of the advision of the	man the case of the same a manufacture with the	and all the second to be addressed to be addressed to the second to the
ه السياد ال مستشلب اليون البار مرده ال	the state of the second s	الله والمقد الهارية والم المراجع والمراجع
and the second s		· 전· 전· · 전· · · · · · · · · · · · · ·
AND A AN ANA		and the second
and the second sec		
and the second sec	1 THE R. L. LANSING THE PROPERTY AND THE PROPERTY AND	the party of the party of the last the

Structured sparsity (regular data pattern)

		1005			1111	a	195 - 11 185 - 11	2114	2.11.1	1	STORE STORE			10.11	 	111111	10 m			-	21110
		1.1222	120	A PERMIT	121100-001			Er mett	11.641 114		Tallistotell Tallistotell Tallistatelle		and instantion.	11 11 11 11	 45 5555	100000		1.		in the second	AT 12 Boot 2
-		1		1	C .							C							1	1	

5× speedup after concatenation of nonzero rows and columns

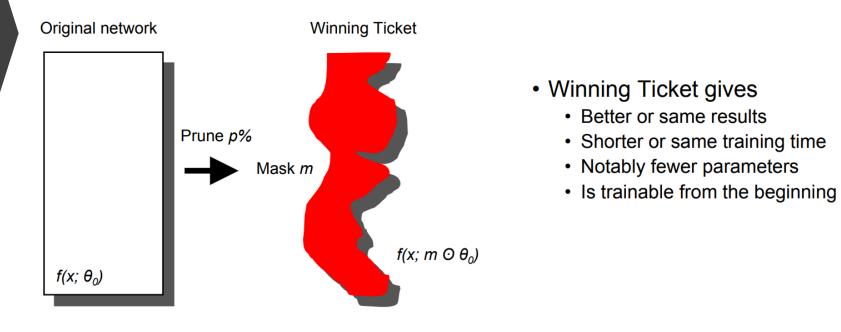
Structured sparsity can be induced by adding group-lasso regularization


$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

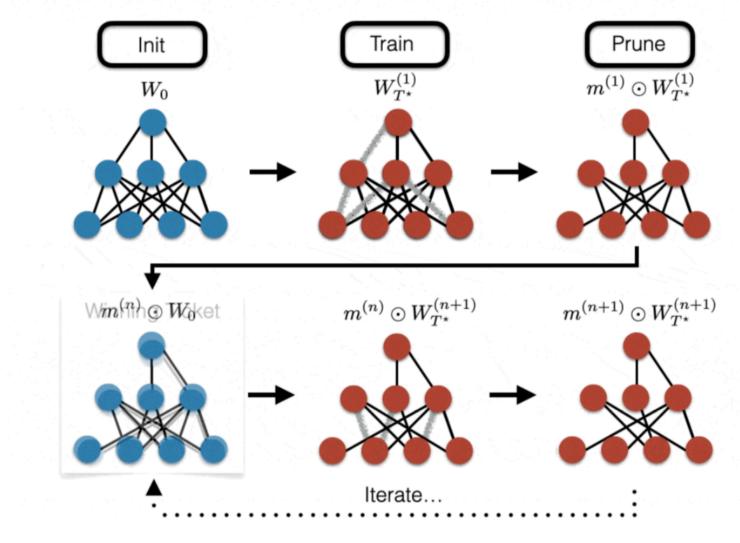
• Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet #	Error	Filter # [§]	Channel # §	FLOP §	Speedup §
1 (baseline) 2	$0.9\%\ 0.8\%$	20—50 5—19	1—20 1—4	100%—100% 25%—7.6%	$1.00 \times -1.00 \times 1.64 \times -5.23 \times$
3	1.0%	3-12	1—3	15%-3.6%	$1.99 \times -7.44 \times$


[§]In the order of *conv1*—*conv2*

Structured sparsity


Lottery Ticket Hypothesis

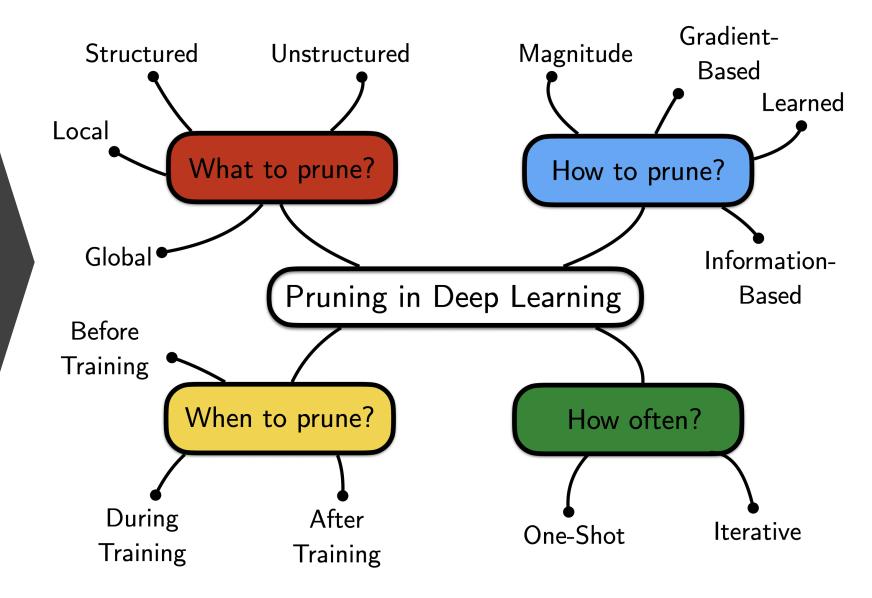
The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.

Searching for Tickets: Iterative Magnitude Pruning

Lottery Ticket Hypothesis

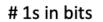
Lottery Ticket Hypothesis on Big Pre-Trained Models

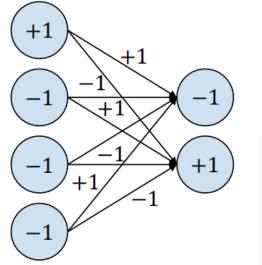
Shrinking massive neural networks used to model anguage A new approach could lower computing costs and increase accessibility to state-of-the-art natural language processing. Daniel Ackerman | MIT News Office December 1, 2020

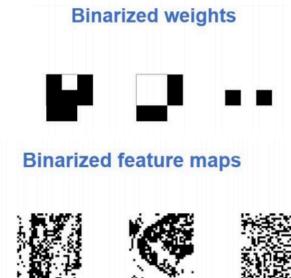

The Lottery Ticket Hypothesis for Pre-trained BERT Networks

Tianlong Chen¹, Jonathan Frankle², Shiyu Chang³, Sijia Liu³, Yang Zhang³, Zhangyang Wang¹, Michael Carbin² ¹University of Texas at Austin, ²MIT CSAIL, ³MIT-IBM Watson AI Lab, IBM Research {tianlong.chen,atlaswang}@utexas.edu,{jfrankle,mcarbin}@csail.mit.edu, {shiyu.chang,sijia.liu,yang.zhang2}@ibm.com

	MNLI (70%)	82.56	89.20	84.77	47.89	87.34	72.14	60.75	90.83	11.19	82.90	57.52	2
	QQP (70%)	80.87	89.95	84.18	52.11	87.27	72.30	60.17	88.80	16.50	81.57	57.64	1
sity %	STS-B (70%)	80.05	88.26	87.34	56.34	86.17	72.71	57.40	87.92	4.31	80.74	57.59	1
(Span	WNLI (70%)	79.70	87.52	67.13	53.87	84.96	69.90	55.23	87.27	0.00	80.31	57.75	1
asks	QNLI (70%)	80.80	88.75	83.16	54.93	88.89	71.73	58.96	89.56	3.65	82.44	57.47	3
Irce T	MRPC (70%)	79.98	87.88	81.25	56.34	85.66	75.57	54.87	88.15	7.48	79.89	57.74	1
Subnetworks on the Source Tasks (Sparsity %) $\overset{\infty}{ m arsigma}$	RTE (70%)	80.18	88.18	79.50	55.87	86.49	71.57	58.37	88.15	1.55	80.77	57.78	1
on th	SST-2 (70%)	80.15	88.44	77.61	53.99	85.77	70.67	56.92	89.99	7.52	81.05	57.76	2
works	CoLA (70%)	80.06	88.29	77.48	54.93	86.30	70.83	55.60	88.57	38.89	81.01	57.81	1
ubnet	QuAD v1.1 (70%)	80.90	88.90	84.09	53.99	89.40	72.06	59.93	90.18	8.03	86.37	57.47	3
	IMP) MLM (70%)	82.59	90.03	87.43	55.05	89.44	81.58	59.81	91.86	47.15	86.54	63.16	6
F	Pruning θ_0 (70%)	82.46	89.62	85.28	53.52	89.13	72.55	58.84	91.06	32.21	85.33	57.09	4
		MALI	oor	515 ^{,0}	MALL	ONIL .	MRPC	etter .	55 ²²	COLA SQUA	s	MIM	
		-	·	5	-	-	4		-	SOUA	ý		


Transfer Tasks


Summary of Pruning



More About Quantization

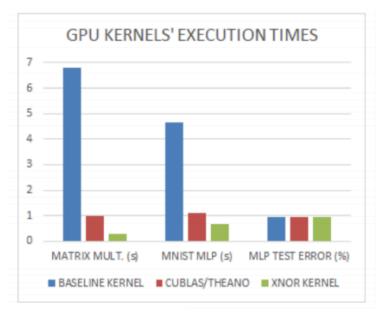
- Neural networks can be even **binarized** (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- Expensive **32-bit MAC** (Multiply-**AC**cumulate) ⇒ Cheap **1-bit XNOR-Count**
 - "MAC == XNOR-Count": when the weights and activations are ±1

Binary Neural Networks

- Idea: Training real-valued nets (W_r) treating binarization (W_b) as noise
 - Training W_r is done by stochastic gradient descent
- Binarization ($W_r \rightarrow W_b$) occurs for each forward propagation
 - On each of weights: $W_b = \operatorname{sign}(W_r)$
 - ... also on each **activation**: $a_b = \operatorname{sign}(a_r)$
- Gradients for W_r is estimated from $\frac{\partial L}{\partial W_h}$ [Bengio et al., 2013]
 - "Straight-through estimator": Ignore the binarization during backward!

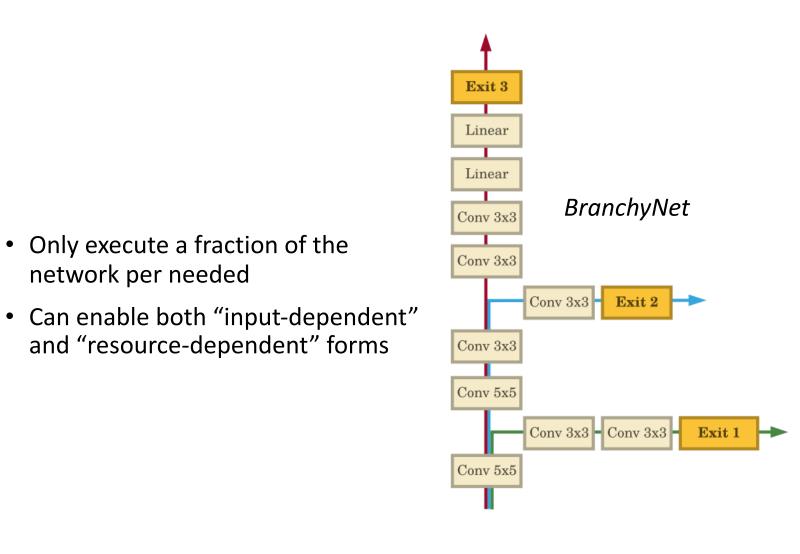
$$\frac{\partial L}{\partial W_r} = \frac{\partial L}{\partial W_b} \underline{\mathbf{1}}_{|W_r| \le 1}$$
$$\frac{\partial L}{\partial a_r} = \frac{\partial L}{\partial a_b} \underline{\mathbf{1}}_{|a_r| \le 1}$$

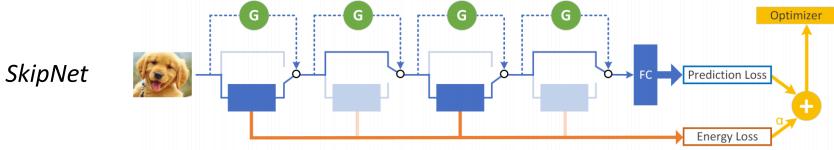
- Cancelling gradients for better performance
 - When the value is too large


Binary Neural Networks

- BNN yields **32x less memory** compared to the baseline 32-bit DNNs
 - ... also expected to reduce energy consumption drastically

• 23x faster on kernel execution times


- BNN allows us to use XNOR kernels
- 3.4x faster than cuBLAS


Operation	MUL	ADD
8bit Integer	0.2pJ	0.03pJ
32bit Integer	3.1pJ	0.1pJ
16bit Floating Point	1.1pJ	0.4pJ
32tbit Floating Point	3.7pJ	0.9pJ

• BNN achieves comparable error rates over existing DNNs

Dynamic Inference

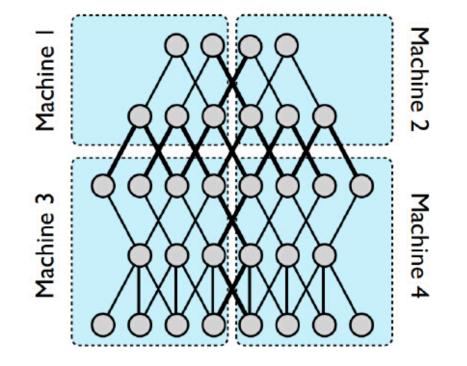
Real-World Efficient ML: Way to Go

- Jointly utilizing several compression means
 - Also can choose efficient "by-design" models (MobileNets, or even non-deep models, etc.)
- Data processing is often a key concern, maybe more important
- Hardware co-design is another key concern
- Resource constraints & user demands often change over time

Demo: Energy-Efficient UAV-Based Text Spotting System

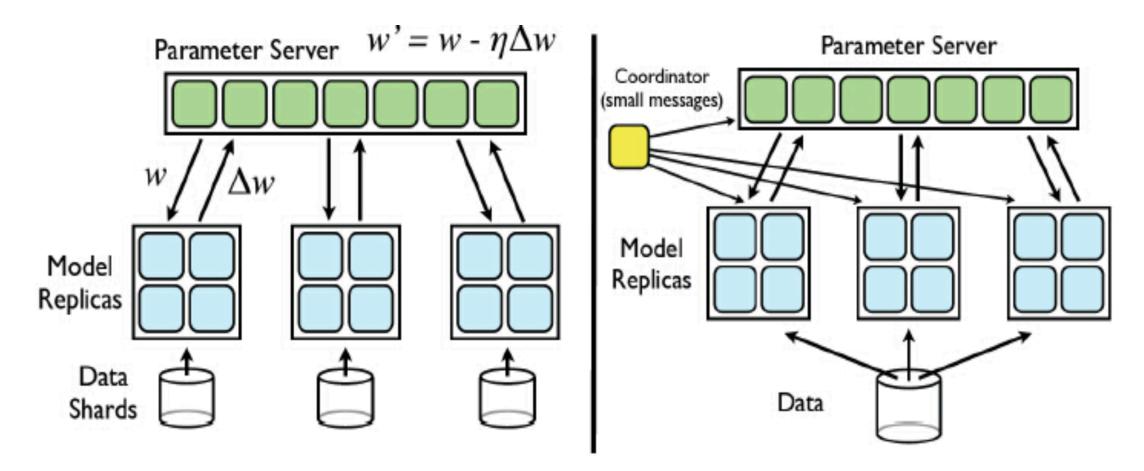
- Task: accurate detecting signs and recognizing texts in the video, captured by an unmanned aerial vehicle (UAV), with minimal energy cost as possible (Hardware: <u>Raspberry Pi 3B+</u>)
- Our solution won 2nd prize in the highvisibility IEEE CVPR 2020 Low-Power Computer Vision (LPCV) Challenge, among 11 university & company teams that submitted 84 independent solutions.

SPONSORS


O PyTorch 🗧 🗶 XILINX.

X_a Google

ELAN


2020 Low-Power Computer Vision Challenge

Model Parallelism

- Deep net is stored and processed on multiple cores (multi-thread) or machines (message passing)
- Performance benefit depends on connectivity structure vs. computational demand

Data Parallelism

Asynchronous SGD

Distributed L-BFGS

From Inference to Training: Lessons and Challenges

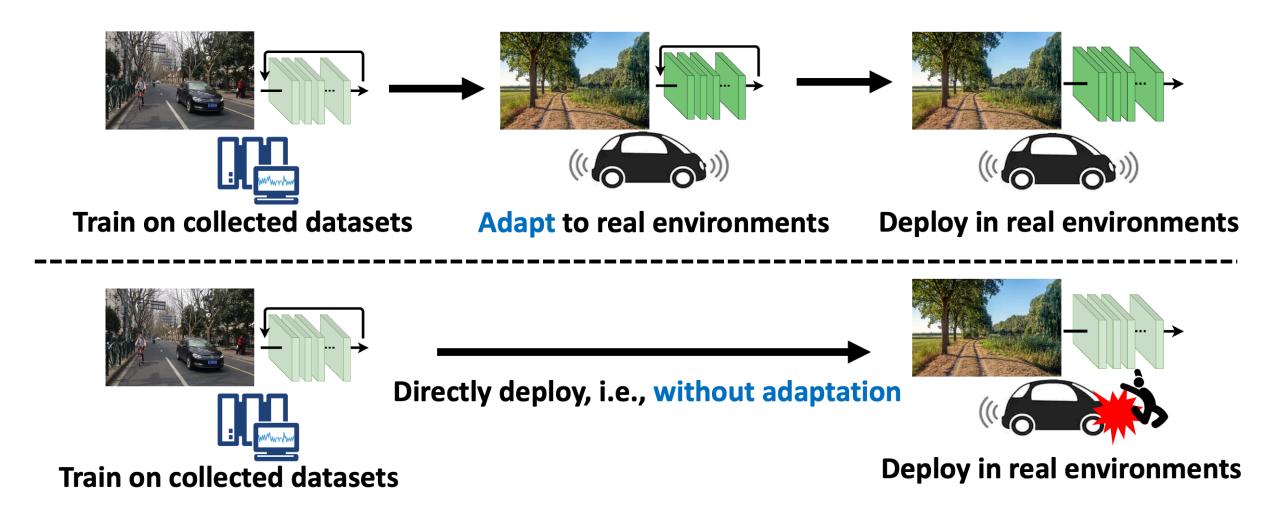
• Training v.s. Inference: one-pass feedforward v.s. iterative forward + backward

• Lessons that we learned from Inference:

- Model parameters are not born equally, and many redundancies do exist
- *Know your specific goal:* saving memory, latency and energy are often not aligned
- To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
- Consider a more "end-to-end" effort beyond just the model itself (data, hardware, architecture...)

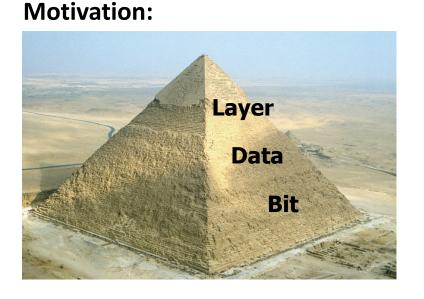
• New Challenges posed for Training:

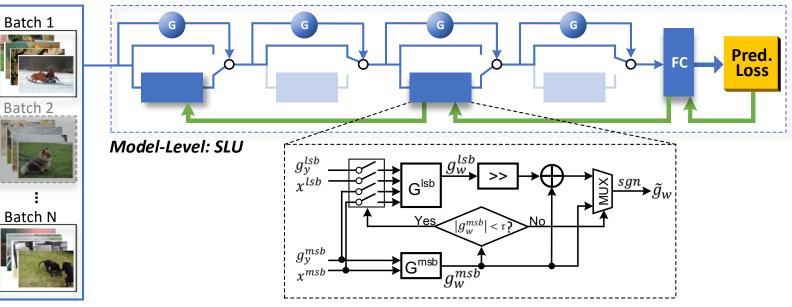
- Saving per-sample (mini-batch) complexity (both feed-forward and backward)
- The empirical convergence (how many iterations needed) matters more than per-MB complexity
- Data access/movement bottlenecks are (even more) crucial


Energy-Efficient Training: Prevailing Demands

- Shifting model training from the cloud to the edge
 - Facilitating personalization; saving bandwith/communication energy; protecting privacy
- Deep learning has a terrible carbon footprint
 - "Training a single AI model can emit as much carbon as five cars in their lifetimes", MIT Tech Review

On-Device Training (Adaptation) is on Growing Demand




Problem Setting

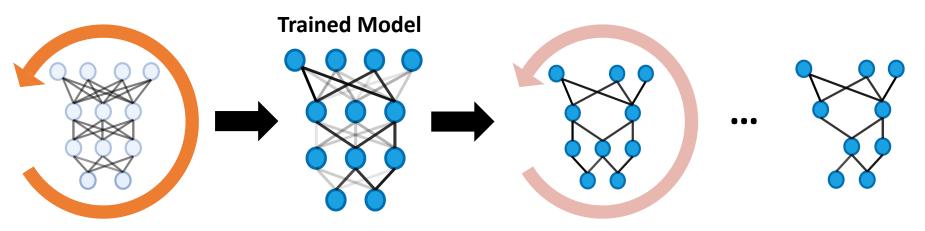
- We consider the most basic CNN training, assuming both the model structure and the dataset to be pre-given, training from scratch
 - Trim down the total energy cost for in-situ, resource-constrained training.
 - not usually the realistic IoT case, but address it as a starting point
- Many existing works are on accelerated CNN training
 - ... they mostly focus on reducing the total training time in resource-rich settings, such as by distributed training in large-scale GPU clusters

E2-Train: Energy-Efficient CNN Training [NeurIPS'2019]

Data-Level: SMD

"Three-Pronged" Approach:

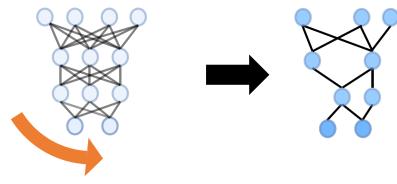
- Data-Level: stochastic mini-batch dropping
- Layer-Level: selective layer update
- **Bit-Level:** predictive sign gradient descent


Datasets	Models	Accuracy (vs. Original One)	Energy Savings
CIFAR-10	MobileNetV2	92.06% (vs. 92.47%)	88%
	ResNet-110	93.01% (vs. 93.57%)	83%
CIFAR-100	MobileNetV2	71.61% (vs. 71.91%)	88%
	ResNet-110	71.63% (vs. 71.60%)	84%

Bit-level: PSG

Energy savings is quantified based on FPGA implementation

EB-Train: Training via Early-Bird Lottery Ticket [ICLR'2020]

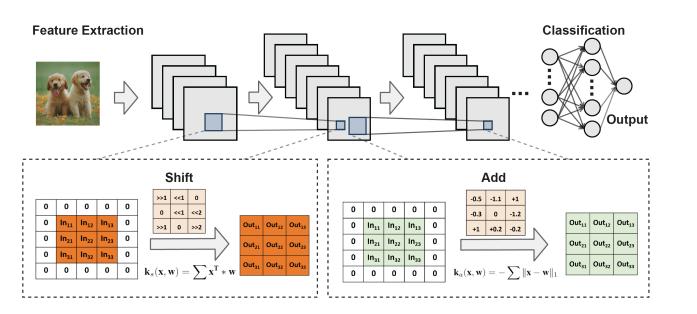

Progressive Pruning and Training (e.g., [J. Frankle, ICLR 2019])

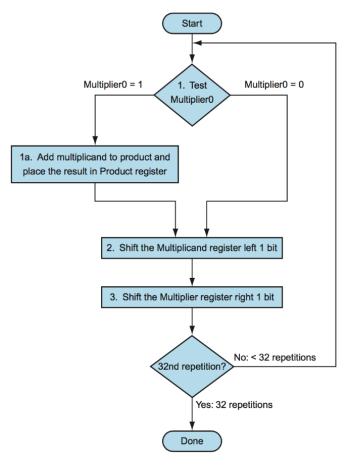
100% training

DARPA

Early-Bird Train (Proposed)

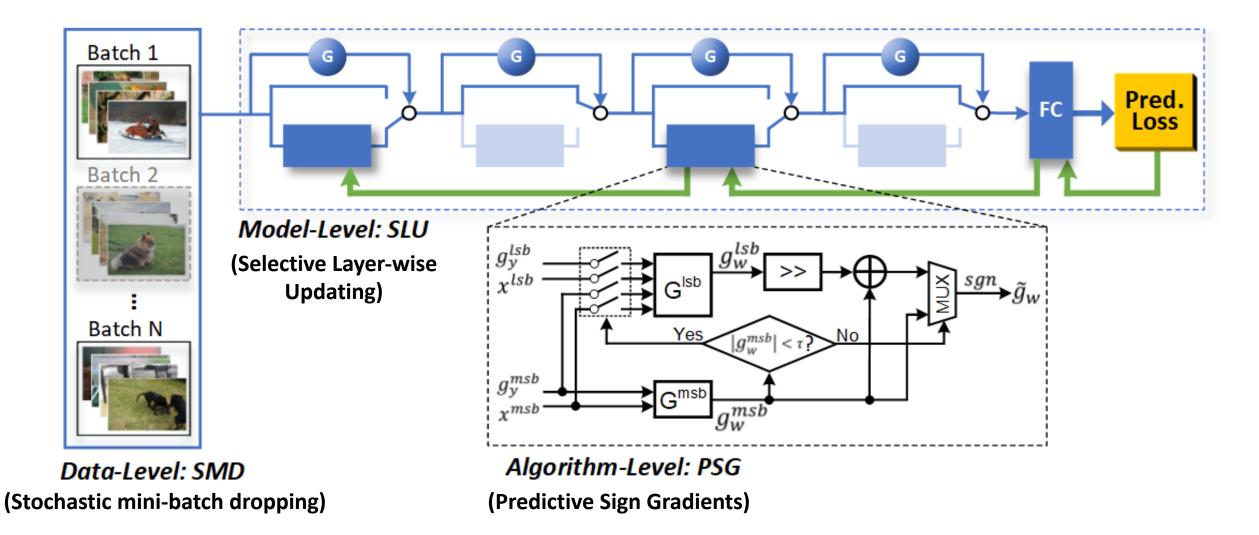
10% - 20% training


For the first time:


- 1. We **discover the existence** of Early-Bird (EB) Tickets
- 2. We **propose a detector** of low cost to detect EB Tickets
- We leverage the existence of EB Tickets to develop an efficient training scheme
- > 5.8× 10.7× reduced training energy with a comparable or

even better accuracy over the most competitive baseline ³⁵

- Multiplication dominates the computation workloads of deep networks
 - How multiplication is efficiently implemented in hardware accelerators?
 - Any multiplication = a left/right bit shift, and an addition of the residual

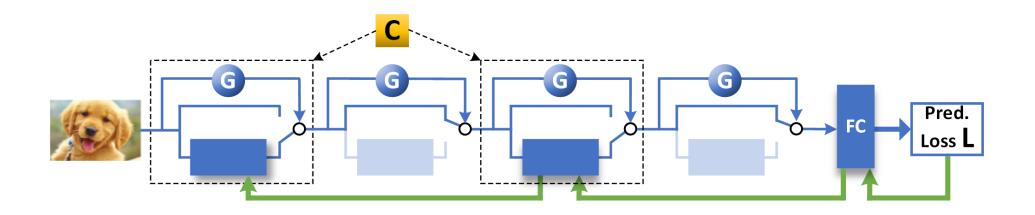

Insight: We explicitly re-build a new multiplication-free deep network, where each multiplication layer is re-parameterized into two learnable layers: element-wise bit-shift layer, and additive layer

Performance: ~ same accuracy + up to $\sqrt{80\%}$ energy cost. on CIFAR-10/100 and several IoT datasets (inference + training)

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

E2-Train: Energy-Efficient Training Framework (NeurIPS'19)

Data-Level: Stochastic mini-batch dropping (SMD)


"Frustratingly easy" strategy: randomly skipping mini-batches with 0.5 prob. throughout training

- It sounds ridiculous, but it works!!!
 - We fine-tuned the learning rates, decay, etc., for the original training protocol, but were unable to outperform SMD
- We aim to present some proof from non-asymptotical SGD... stay tuned!

	Energy Savings	Accuracy (top-1)	Accuracy (top-5)
Original	N/A	71.60%	91.50%
SMD	48.43%	70.40%	92.58%

Example: ResNet-110 on CIFAR-100

Model-Level: Input-dependent selective layer update (SLU)

- For each minibatch, we select a different subset of CNN layers to be updated, in an input-adaptive way
- Implementation: extend the idea of dynamic inference to training , both feed-forward and backward
- Routing by a series of RNN gates: they cost less than **0.04%** FLOPs than the typical base models
- As a side effect, SLU will naturally yield CNNs with dynamic inference capability
- The practice of SLU seems to align with several recent theories on CNN training
 - "not all layers are created equal", and "lottery ticket", etc.

Algorithm-Level: Predictive sign gradient descent (PSG)

- Low-precision implementation is a very effective knob for achieving energy efficient CNNs
- Training with extremely low-precision (binary) gradients, e.g., SignSGD, is shown to be feasible
 - However, they require the computation of full-precision gradients before taking signs -> not energy saving!
- We predict the sign of gradients using low-cost bit-level predictors, therefore completely bypassing the costly full-gradient computation. **Table 1:** Comparing the inference accuracy and energy

$$\tilde{g}_w[i] = \begin{cases} sgn(g_w^{\text{msb}}[i]) &, |g_w^{\text{msb}}[i]| \ge \tau \\ sgn(g_w[i]) &, \text{otherwise} \end{cases}$$

Table 1: Comparing the inference accuracy and energy savings over the baseline of SGD (32-bit floating point) when training with 8-bit fixed point [2], and PSG.

Method	32-bit SGD	8-bit [2]	PSG
Accuracy	93.39%	93.24%	92.95%
Energy savings	NA	38.62%	63.28%

• The prediction failure probability of PSG is upbounded by a term that degrades exponentially with the precision assigned to the predictors

Results: Accuracy versus Energy Trade-off

Training ResNet-74 on CIFAR-10 (baseline acc: top-1 93.57%)

FLOPs saving	Energy saving	Accuracy (top-1)
80.27%	83.40%	93.01%
85.20%	87.42%	91.74%
90.13%	91.34%	91.68%

Training ResNet-74 on CIFAR-100 (baseline acc: top-1 71.60%; top-5 91.50%)

FLOPs saving	Energy saving	Accuracy (top-1)	Accuracy (top-5)
80.27%	81.27%	71.63%	91.72%
85.20%	88.72%	68.61%	89.84%
90.13%	92.90%	67.94%	89.06%

Observation: the proposed training does not slow down the empirical convergence. In fact, it even makes the training loss decrease faster in the early stage.